

Idaho National Engineering and Environmental Laboratory

Development of a High Temperature Solid Oxide Electrolyser System

Steve Herring, Ray Anderson, Jim O'Brien, Paul Lessing, and Carl Stoots

2003 Hydrogen and Fuel Cells Merit Review Meeting Berkeley, CA, May 20, 2003

1

1. Relevance/Objective

OHFCIT: Production Goals

Research and develop high and ultra-high temperature processes to produce hydrogen through chemical cycle-water splitting technology or other non-carbon-emitting technology utilizing heat from nuclear or solar sources.

Characteristics		Units	2003 Status	2005 Target	2010 Target
Cell Stack	Cost	\$/kg	0.64	0.46	0.27
	Efficiency ²	%	76	85	94
Balance of Plant	Cost	\$/kg	0.83	0.52	0.32
	Efficiency	%	92	93	96
Electricity ³	Cost	\$/kg	1.59	1.41	1.23
Heat ⁴	Cost	\$/kg	0.19	0.17	0.15
Total	Cost ⁵	\$/kg	3.25	2.55	1.96
	Efficiency	%	70	79	90

¹ Electrolyser delivering 500 kg per day (based on projected technology developments, not current system sizes).

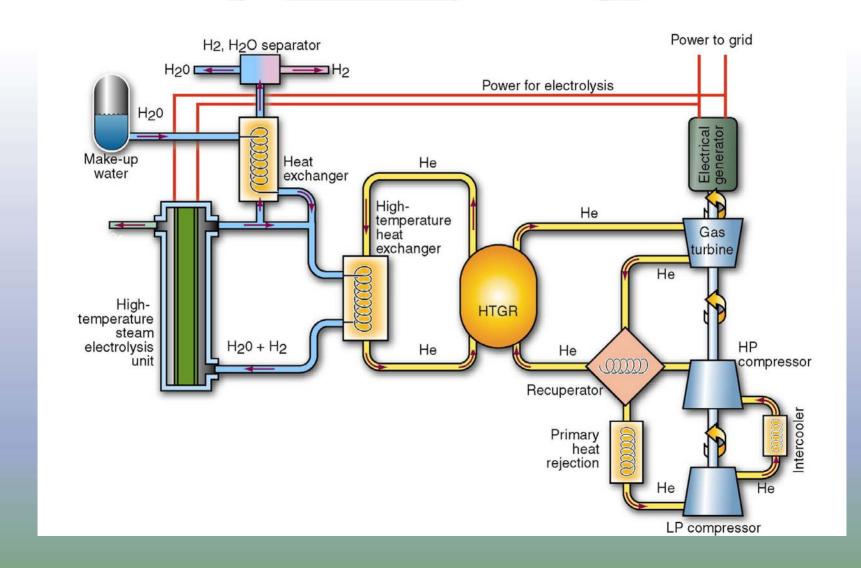
Barriers: U (scaling), V (renewable integration), W (electricity costs)

² Based on total energy into electrolyzer. All calculations based on Lower Heating Value of hydrogen.

³ Assumes electricity at \$0.045 per kWh and 95% capacity factor.

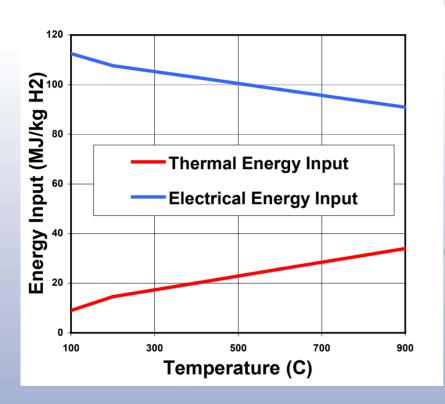
⁴ Heat is valued at \$0.016 per kWht.

⁵ Based on system capital cost of \$1500, \$1100, and \$700. Includes O&M cost at 2% of capital charges, 15% IRR, 20 year equipment life.

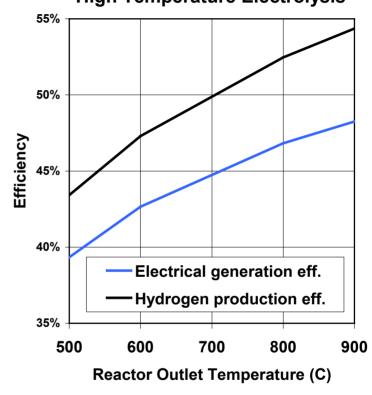


2. Approach

- Development of energy-efficient, high-temperature, regenerative, solid-oxide electrolyser cells (SOECs) for hydrogen production from steam.
 - Reduce ohmic losses to improve energy efficiency
 - increase SOEC durability and sealing with regard to thermal cycles
 - minimize electrolyte thickness
 - improve material durability in a hydrogen/oxygen/steam environment
 - Develop and test integrated SOEC stacks operating in the electrolysis mode
- Specification and testing of hydrogen-permeation-resistant materials for a high-temperature heat exchanger



2. Approach: High Temperature Electrolysis System



Energy Input to Electrolyser

Theoretical Efficiency of High Temperature Electrolysis

Sulfur-lodine efficiency estimates:

0% at 670 C peak

10% at 700 C peak

35% at 800 C peak

42% at 830 C peak

3. Project Timeline / 6. Plans, future milestones Began Jan. 2003

Major Task Descriptions	Year 1	Year 2	Year 3		
Task 1A. Development of SOFC materials (INEEL)					
1.1 Testing of Baseline Single Cells					
1.2 Testing of Baseline Multiple Cell Stacks					
1.3 Development of Improved Single Cells					
1.4 Testing of Improved Single Cells					
1.5 Development of Improved Cell Stacks					
1.6 Testing of Improved Cell Stacks					
Deliverable: Task 1 report at the end of 12th month		•			
Task 1B. Materials Development (Ceramatec)					
1.7 Development and fabrication of baseline SOFCs					
1.8 Development and fabrication of improved SOFCs					
Task 2. Hydrogen Permeation Studies					
2.1 Development of test facility					
2.2 Testing of baseline permeation cells					
2.3 Testing of additional permeation materials/barrier]			
Deliverable: Task 2 report at the end of year		•			
Task 3. System Integration					
3.1 Optimize interface of reactor with electrolytic cells					
Deliverable: Task 3 report at the end of 2nd and 3rd years			•		
Task completion Deliverable			02-GA00309-04		

4. Accomplishments/Progress

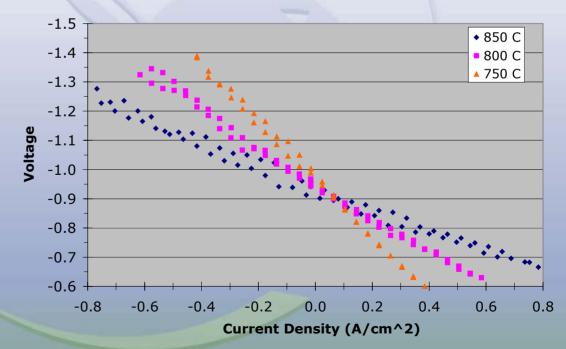
- Funding began Jan. 21, 2003
- Subcontract placed with Ceramatec
- Initial single cell received for testing at INEEL
- Tests conducted at Ceramatec
- Test loop designed, passed safety review and constructed
- Initial INEEL testing, May 14, 2003

Reversible SOFC Electrolysis

Initial Data from Ceramatec

Electrolysis portion:

ASR: 0.45 ohm-cm^2 at 850 C 0.63 at 800 C, and 0.98 at 750 C.


Bubbler temperature: 88 C OCV: 0.94 V at 800 C

Input: 50:50 mixture steam and H2

H2 flow: 35 sccm cell area: 2.5 cm²

Exit mole fraction is calculated to have 73% H2 and 27% H2O using the 850 C

peak current value.

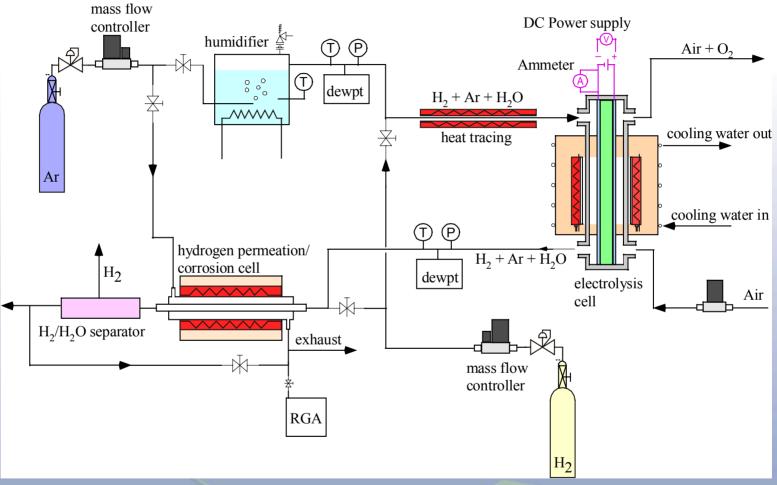
Ceramatec "button cell" for initial single-cell testing:

Anode: Nickel zirconia cermet (cathode in electrolysis mode)

• Cathode: Strontium-doped lanthanum manganite (anode)

• Electrolyte: YSZ, 175 μm thickness

• Active cell area: $\sim 3.2 \text{ cm}^2$


• Includes an electrically isolated electrode patch for monitoring of reference

open-cell voltage

INEEL High-Temperature Steam Electrolysis and Hydrogen Permeation Experiment

Experimental Hardware in Assembly at INEEL

5. Significant interactions with industry

Industrial Collaborator

Ceramatec, Inc.

Salt Lake City, UT

• 25+ years of contract R&D experience developing electrochemical ceramics

Responsibilities:

- Fabricate single-cell SOECs and planar cell stacks for testing at INEEL
- Collaborate in testing SOECs for High Temperature Electrolysis (HTE)
- Develop improved SOECs for the HTE application

Conclusions

- High-temperature steam electrolysis using a high temperature heat source is a viable near-term strategy for large-scale hydrogen production
- Solid-oxide cells represent a logical choice for hightemperature steam electrolysis due to their high operating temperature and high efficiency
- INEEL is initiating a research program to study materials and thermoelectric efficiency issues related to the HTE process using solid oxide electrolytes